

BepiColombo MMO Payload Mercury Dust Monitor (MDM)

Dust Seminar ICRR 31 March 2006

BepiColombo MMO Payload Mercury Dust Monitor (MDM)

野上謙一(獨協医大)、宮地孝、蔵座元英(早大理 工総研)、大橋英雄(海洋大環境)、藤井雅之(FA M)、佐々木晶(天文台·水沢)、岩井岳夫(東大原 総センター)、藤原顕、矢野創(JAXA/ISAS)、柴田 裕実(京大院工)、南繁行、武智誠次、太西俊之(大阪市大)、Eberhard Grün、Ralf Srama(Max Planck Institute for Nuclear Physics, Germany)

BepiColombo計画概要

Guiseppe (愛称 Bepi) Colombo (1920-1984) Italy, Applied mathematician 水星の 自転:公転=2:3 であることを解析的に証明した。

BepiColombo 計画:ミッションシナリオ

<u>水星磁気圏探査機MMO(Mercury</u> Magnetospheric Orbiter)の想像図

BepiColombo MMO Schedule (Jan. 2006)

水星磁気圏探査機MMO: 観測装置・チーム (2006/1現在)

MGF (35人)	磁場観測	W. Baumjohann (IWF, オース トリア) 松岡彩子 (JAXA)	Japan: 東海大、九州大、東北工大、熊本大、 東京工大、東京大、情報通信研究機構 Europe:ドイツ、イギリス、Others:アメリカ
MPPE (65人)	電子・イオン高速中 性粒子のエネル ギー・質量分析	斉藤義文 (JAXA)	Japan:京都大、名古屋大・太陽地球環境研、 東京工大、東北大、東京大、極地研、情報 通信研究機構 Europe: フランス、イギリス、イタリア、チェ コ、ベルギー、ドイツ、スイス Others: アメリカ、台湾
PWI (45人)	電場、プラズマ波動、 電波電子密度・温度 の計測	松本紘(京都大·生存圏研) 小嶋浩嗣 (京都大·生存圏研) 八木谷聡 (金沢大)	Japan: 富山県大、愛媛大、京都産業大、東 北大、JAXA Europe: フランス、スウェーデン、ノルウェー、 フィンランド、ハンガリー、ESA/RSSD
MSASI (20人)	ナトリウム大気 の撮像	吉川一朗 (東京大) O. Korablev (IKI, ロシア)	Japan: 立教大、東北大、東京工芸大、極地 研
MDM (12人)	水星・惑星間・ 恒星間ダストの 観測	野上謙一 (獨協医大)	Japan: 東京海洋大、早稲田大、京都大、大 阪市大、国立天文台、JAXA Europe: ドイツ

Mercury Dust Monitor

Dust flux near Mercury from Mann et al. 2003

Calculated micrometeoroid flux near Mercury (Ishimoto et al. 2001)

The table of dust detectors performance

Spacecraft	distance	spin axis	sensor	mass	sensitive	solid	dynamic
	range	direction	orientation	threshold	area	angle	range
	(AU)		(deg)	(g)	(m ²)	(sr)	
Helios 1/2	0.3-1	N	65, 134	9*10 ⁻¹⁵	0.012	1.23	10 ⁴
Galileo	0.7-5.4	S, E	120	9*10 ⁻¹⁵	0.1	1.4	10 ⁶
Pioneer 9	0.75-0.99	N	90	2*10 ⁻¹³	0.0074	2.9	200
Pioneer 8	0.97-1.09	N	90	2*10 ⁻¹³	0.0094	2.9	200
HEOS 2	1	var.	0	2*10 ⁻¹⁶	0.01	1.03	10 ⁴
Hiten	1	N	90	2*10 ⁻¹⁵	0.01	1.5	3*10 ⁴
Ulysses	1-5.4	E	85	4*10 ⁻¹⁵	0.1	1.4	10 ⁶
Pioneer 10	1-18	E	180	8*10 ⁻¹⁰	0.26 ⁽¹⁾	2.8	1
Pioneer 11	1-10	E	180	6*10 ⁻⁹	0.56 ⁽¹⁾	2.8	1

MDM Device

BepiColombo Mercury Dust Monitor (MDM)

P.14

Metal (Mg) frame of the PZT sensor

PZT (ピエゾ素子) センサー (5cm x 5cm x 1mm) x 4 plates

BepiColombo Mercury Dust Monitor (MDM)

P.16

 東大・東海村とドイツMPI-K研究所の加速器を使用 flight time: t velocity: v = L/t charge: q=cV, induced voltage V and capacitance 1pF. energy: mv²/2= qU, acceleration voltage U mass: m = 2qU/v²

New big chamber of the dust accelerator at HIT

(5cmx5cm)x4plates of PZT in the dust accelerator chamber

Particle mass vs. velocity by the van de Graaf dust accelerator

P.20

View of the impact signal of PZT

Typical waveform (MPI-K) Change with velocity (Iron particles)

Rise time vs. velocity of single peaked pulse

High speed impact (> 8 km/s)

Local sensitivity of the 5cm sq. PZT

• Output voltage of the PZT exited by the same energy

Detectable mass and velocity ranges

取付位置と熱対策

BepiColombo Mercury Dust Monitor (MDM)

P.27

観測機器の配置

Xalit

太陽・水星からの輻射熱は地球近くの10倍

ピエゾ素子の熱解析結果

水星軌道での衛星各部の温度予想

NOT INCLUL TEMPERATU	DING 20 degC JRE MARGIN	Sun OBS	:91d	eg	Sun COI	1:91d M	eg	Sur STE	n:91d 3Y	leg	Sui OB	า:91c ร	leg	Sun: CON	:91de 1	∋g)	i Su i ST	n:91c BY	leg
		MANY	NAINI			NAINI		MAX	MAINI		<re< th=""><th>evers</th><th>e></th><th><rev< th=""><th>verse</th><th>></th><th><u> <r< u=""></r<></u></th><th>evers</th><th>e></th></rev<></th></re<>	evers	e>	<rev< th=""><th>verse</th><th>></th><th><u> <r< u=""></r<></u></th><th>evers</th><th>e></th></rev<>	verse	>	<u> <r< u=""></r<></u>	evers	e>
				AVE	IVIAA			IVIAX								AVE			AVE 24
		64	21	32	58	14	25	50	12	24	49	13	32	42	6	25	41	4	24
HEP_ELE.16351		04 70	15	24	01		23	57	40	10	40	9	21	43	4	23	30		19
HEP_ION.16341		12	24	407	400	20	30	108	18	29	20	9	407	57	- 11	407	49	<u> </u>	407
		198	4	187	198	4	187	198	4	187	199	3	187	199	3	187	199	3	187
MEA1.16041		68 70	20	3	64	15	20	61	10	23	51	21	31	40	<u> </u>	21	43		23
MEEISTO1 T7000	MEEISTO S1 Root Housing	68	24	22	60	20	24	64	19	29	54	<u>21</u>	43	<u>40</u> 54	/	24	<u>47</u> 50	2	29
MEEISTO2 T7000	MEFISTO S2 Box a Housing	57	24	24	52	24	20	52 52	19	29	- 54 - 70	0	24	54	9	20	42	<u> </u>	29
MCEMST TOOT	MGE Mast CAN INI	72	24	52	70	20	29	60	42	20	40	26	52	50	34	29	43 57	22	20
MGEMST T6011	MGE Mast CAN OUR2	95	40	52	94	44	57	09	42	40 55	71	20	50	70	27	57	69	32	<u>40</u>
		72	40	22	72	24	24	66	43	26	52	20	22	55	27	25	47	20	27
MSA T6116	MSA S-CASE	76	31	40	73	27	36	71	25	34	59	12	40	55	7	36	53	5	34
MSASI T6901	MSASHL OPT-Main	73	28	38	59	10	22	58	<u>2</u> 3 a	21	56	20	38	41	2	22	40	1	21
PANT1 T6093	PANTI BASE-PLT	68	25	35	67	22	33	65	21	31	52	11	35	50	8	33	48	6	31
PANT2 T6093	PANT2 FASE-F	66	28	38	63	24	34	60	21	31	54	17	38	51	12	34	48	9	31
SCMST T6047	SC-Mas CAN N1	75	49	55	74	49	54	72	47	52	63	38	55	62	37	54	60	35	52
SCMST T6051	SC-May CAN-OUT3	87	48	61	87	47	61	85	45	59	73	31	61	73	30	61	71	28	59
SSAS.T1	Spin Sun Aspect Sensor	159	57	148	159	57	148	159	57	148	158	57	148	158	57	148	158	57	148
SSC.T100	Star Scar Jer -ELE	53	31	39	47	26	35	45	24	33	49	30	39	44	25	34	42	23	33
TANK.T4101	RC NZ (ank	35	32	34	35	33	34	30	27	29	34	32	34	35	33	34	30	28	29
THR AX1.T311	TF x-Ax1 V-F 推薬弁フランジ	52	12	22	52	12	22	49	8	19	39	5	23	39	5	22	36	1	19
THR AX2.T511	THR-AX2 V-F 推薬弁フランジ	38	4	16	36	2	13	34	0	12	30	1	16	27	-2	13	26	-3	12
THR TAN1.T111	TH-TAN1 1V-F 推薬弁フランジ	72	53	58	74	55	60	68	50	55	67	40	58	69	42	60	64	37	55
THR_TAN1.T161	7 R-TAN1_2V-F 推薬弁フランシ	70	51	57	72	53	58	67	48	54	65	38	57	67	40	58	62	35	54
THR_TAN2.T11	HR-TAN2_1V-F 推薬弁フランシ	70	48	54	66	45	51	64	43	49	64	35	54	61	32	51	59	30	49
THR_TAN2.T16	THR-TAN2_2V-F 推薬弁フランシ	69	48	54	66	45	51	64	43	50	64	34	54	61	32	51	59	30	49

	MAX	MIN	AVE
MDM	193°C	4 °C	187 °C

High temperature test of PZT 200°C、25days

BepiColombo Mercury Dust Monitor (MDM)

P.33

ダスト計測器の特性一覧

	MDM-S	MDM-E	total
Mass	149 g	346 g	545 g (10% margin)
Nominal Power	0 W	2.2 W	
Raw data rate		1 kbit/event	

Parameters	Values/description	Remarks
MDM-S		
Туре	100 cm ² Piezoelectric device (PZT)	5 cm x 5 cm x 4
Field of view	2 pai	Resolution: S/C spin
Detection quantities	count, direction, velocity, momentum	
Mass sensitivity	Mass x Velocity >~ 10 ⁻¹² kgm/sec	
Location	Outside of the side panel (Middle Prism)	
MDM-E		
Time resolution	40 MHz A/D, ~ 10 ⁻⁷ sec	
size	160 x 80 x 40 mm, 346 g	
Location	inside the spacecraft, near to PZT sensor	
Raw data	1 kbit/event, ~ 100 event/day (0.1 B/day)	

おわり(End)

BepiColombo Mercury Dust Monitor (MDM)

P.35