惑星物質科学のフロンティア研究集会2016

たんぽぽ初年度宇宙運用の現状と 地球帰還後初期分析・キュレーション の準備状況

2016年4月8日 東京大学宇宙線研究所 柏キャンパス 6階大会議室

佐々木聰², 今仁順也², 矢口勇一³, 佐藤信弥³, 奥平恭子³, 河口優子⁴, 田端誠⁵, 今井栄一⁶, 橋本博文¹, 癸生川陽子⁷, 横堀伸一⁴, 山岸明彦⁴, たんぽぽプロジェクトチーム

¹JAXA/Institute of Space and Astronautical Science ; ²Tokyo University of Technology; ³University of Aizu; ⁴Tokyo University for Pharmacy and Life Sciences; ⁵Chiba University; ⁶Nagaoka University of Technology; ⁷Yokohama National University

Tanpopo Development and Operation Schedule

conducted MDR/SRR/SDR	Selected as a Kibo-EF experiment candidate and conducted MDR/SRR/SDR	
	Development of the 0.01 g/cc double-layer aerogels	
2011-3 Development of ExHAM		
2012 ISAC facility allocated at ISAS	SAC facility allocated at ISAS	
Tanpopo Keystone Machine (KM) conc	ept design started	
2013.09 Tanpopo granted as the official Kibo-EI	Tanpopo granted as the official Kibo-EF experiment	
(equivalent to delta MDR, PDR, Projec	t formulation)	
12 Tanpopo CDR		
2014.02 JAXA-NASA Safety Review Ph.0/1/2		
Fall Tanpopo FM development completed	Tanpopo FM development completed	
12 Tanpopo PQR&PSR		
2015.01 PQR&PSR Follow-Up		
02 FM Nominal Delivery to Space-X	FM Nominal Delivery to Space-X	
04 Space-X6 Launch & Docking to ISS		

All Tanpopo Apparatus Successfully Launched and Installed at ISS in 2015

Tanpopo Development and Operation Schedule				
2015 05	The first year ExHAM-1 exposure started			
	11 The first year ExHAM-2 exposure started			
2016 01	ISAC Rehearsal started			
03	03 CLOXS system completed			
05	The first year ExHAM-1 samples to be retrieved			
Summer	The first year ExHAM-1 samples to be returned to the Earth			
Summer	ISAC for the first year ExHAM-1 samples for 3 months			
Winter	The first year ExHAM-2 samples to be returned to the Earth			
2017 Sum	<i>mer</i> The second year samples to be returned for ISAC			
2018 Sum	<i>mer</i> The third year samples to be returned for ISAC			
2019 Sum	mmer The last/fourth year sample to be returned for ISAC			
Fall	Completion of the ISAC activities			
	(Detailed analyses will continue)			

19

Detailed Schedule for the First Year ISAC

PET-1 PHASE-1 (2016 Fall to Winter)

ExHAM-1-1 sample retrieval at JEM ExHAM-1-2 sample exposure at JEM ExHAM-1-1 sample Earth Return ExHAM-1-1 Sample Arrival to ISAS CR PET-1A(ExHAM-1-1) starts at ISAS PET-1A(ExHAM-1-1) delivers the first samples to all sub teams ExHAM-1-1 samples preserved in ISAS CR ExHAM-1-1 samples data archived Press Release

Detailed Schedule for the First Year ISAC

PET-1 PHASE-2 (2016 Winter to 2017 Spring) ExHAM-2-1 sample retrieval at JEM ExHAM-2-1 sample Earth Return ExHAM-2-1 Sample Arrival to ISAS CR PET-1B(ExHAM-2-1) starts at ISAS PET-1A the initial publication submission Press Release

Requirements for Initial Sample Analysis and Curation (ISAC) Activities:

- 1) <u>Photo-documentation and 2D Mapping</u>
- 2) Impact Candidate Locating and Observation
 - 2-1) Common coordinates log among different analysis tools
 - 2-2) Identification of impact track candidates
 - 2-3) Revisit to the candidates for confirmation
 - 2-4) Non-destructive, 3D info acquisition
 - 2-5) Select high priority tracks to be extracted
- 3) Extract samples for detailed analyses
 - 3-1) Define extraction volume and shape
 - 3-2) Extract samples with >10-micron Particles
- 4) Allocate the extracted samples for detailed analysis teams

➔ Procedures 1-4 should be completed in the first 100 days after receiving the returned samples at ISAS/LABAM, under total contamination control and monitoring

Output Examples: Extracted Samples (Conical Shape by R-Stage Control)

On-going ISAC Rehearsals of the First Year				
Block	Dates	Theme	Locations	
Prep	<u>01/25-29</u>	CLOXS & Clean Level Preparation	ISAS	
1	02/01-09	Aerogel Measurement, Impact Site Candidate Mapping & Image Analysis	ISAS, Univ. Aizu	
2	02/15-19	Transport ~XCT Imaging & Data Archiving	ISAS, JAXA Chofu, Kyushu U.	
3	03/09-11	Aerogel Holder Handling & Contamination Monitoring	ISAS	
4	03/30-04/08	CNT Analysis & CP Lid Crater Analysis	ISAS, Nitto, JAXA Chofu	
5A 5B	04/11-15 04/18-22	Sample Extraction	ISAS	
<u>6</u>	04/25-28	Dry Run for All Steps (1)	ISAS, JAXA Chofu, Nitto	
7	05/09-13	Sample Delivery to Microbe & Debris Sub Team (East Face)	ISAS, Toyaku, JAXA Chofu	
8	05/14-22	Sample Delivery to Cosmic Dust Sub Team (Space & North Faces)	ISAS, YNU, Osaka U	
<u>9</u>	05/30-06/03	Dry Run for All Steps (2)	ISAS, JAXA Chofu, Nitto, Toyaku, YNU	
10	06/06-10	Final Refurbishment for ISAS CR & Facilities	ISAS	
Ext.	06/13-08/05	Contingency Period: Detailed Analysis Dry Run CLOXS Operator Trainings	ISAS, Various	

Conclusions

• In-situ investigation and intact sampling of microparticles have a quarter century history and are now recognized as game-changing technologies for astrobiology-driven, ocean world missions in coming decades.

•Tanpopo is Japan's first astrobiology space experiment, in order to test subsets of chemical evolution and panspermia hypothesis, by employing the world's lowest density aerogel.

• Captured samples will be retrieved back from LEO to terrestrial laboratories every year in 2016-2018 time frames for both ISAC and detailed analyses.

• The CLOXS, an autonomous initial inspection and extraction tools for the aerogel samples, is a critical path for timely and successful deliveries of the early results of the Tanpopo project and its lessons will directly serves as a foundation of future astrobiology-driven sample returns.

• The CLOXS has been successfully integrated and demonstrated its performance to meet the major requirements by this March

• ISAC dress rehearsals have been conducted since this January until June, for both aerogels and Al frames.

• Sub-sequent detailed analysis will be conducted after the ISAC activities, ranging from meteoritics, space debris, microbial sub-teams. AO sample allocations are planned after then.